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Constacyclic codes over finite local Frobenius
non-chain rings of length 5 and nilpotency
index 4

C. A. Castillo-Guillén and C. Renteria-Marquez

Abstract

The family of finite local Frobenius non-chain rings of length 5 and
nilpotency index 4 is determined, as a by-product all finite local Frobe-
nius non-chain rings with p° elements (p a prime) and nilpotency index
4 are given. And the number and structure of y-constacyclic codes over
those rings, of length relatively prime to the characteristic of the residue
field of the ring, are determined.

1 Introduction

After the work of R. Hammons et al. (see [7]) the study of linear codes over
finite rings has been a research topic of considerable interest. Some results
on the description of structural properties of linear codes, particularly cyclic
codes, over finite fields, finite chain rings and some finite local Frobenius non-
chain rings, are available in the literature ( [1], [2], [4], [5], [6], [8] ). The ~-
constacyclic codes over the finite ring A are codes invariant under the mapping
oyt A" — A" given by o,(ao,a1,...,an-1) = (Yan—1,00,...,an—_2), Where
~ is a unit of A, and are a generalization of cyclic codes. Finite Frobenius
rings represent an interesting family of rings in Coding theory due to the fact
that MacWilliams identities on the weight enumerator polynomial of a linear
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code and the relations (C+)+ = C and |C||C*| = |A|" are satisfied (see [11]),
where C is a linear code of length n over A.

If p is a prime number, it is well-known that up to isomorphism there is only
one local commutative ring with p elements, namely the Galois field GF(p).
The local commutative rings with p? elements are: Z,2, GF(p)[X]/(X?) and
GF(p?). If p is odd, the local commutative Frobenius rings with p® elements
are: GF(p"), Zys, GF(p)[X)/(X?), Z,2[X)/(X2 — p,pX), GF(p)[X, Y]/(X, Y)2,
Z,2[X]/(X?,pX) and Z,2[X]/(X? — (p,pX), where ( is a primitive element of
GF(p). If p = 2, the local commutative Frobenius rings with 23 = 8 elements
are: GF(23), Zgs, GF(2)[X]/(X3), Zp[X]/(X? — 2,2X), GF(2)[X,Y]/(X,Y)?
and Z:2[X]/(X2,2X), (see [10]).

If p is odd, the local commutative Frobenius non-chain rings with p* elements

(1) Z,3[X]/(X? — (p?, pX),  is a primitive element of GF(p),

(2) Z;DS [X]/<X2 - p27pX>a

(3) Zy2 [X]/(X?),

(4) Loy [X,Y]/<X2 - Y2 Y2 —p, XY,Y3,pX,pY>7

(5) Zp2[X, Y] /(X2 = (Y%, Y? — p, XY, Y3, pX,pY), ( is a primitive element of
GF(p),

(6) GF(p)[X,Y]/(X? - Y2, XY, Y?),
) GF(p)[X, Y]/(X? — (Y2, XY, Y?), € is a primitive element of GF(p).
And the local commutative Frobenius non-chain rings with 2% elements are:

]
4[X]/(X?),
X,Y]/(X% — Y2, Y2 2,XY, Y3 2X, 2Y),
X,Y]/(X2, Y2, XY — 2,2X, 2Y),
X]/(X? - 2X),

Now it would be interesting to determine the family of finite local Frobenius
non-chain rings with p® elements. A local Frobenius non-chain rings with
p® elements has length 5 and the maximal ideal of a finite local Frobenius
non-chain ring of length 5 has nilpotency index 3 or 4, (see Section 4).

The purpose of this paper is twofold. First, to determine the family of
finite local Frobenius non-chain rings of length 5 and nilpotency index 4, as a
by-product all local Frobenius non-chain rings with p® elements and nilpotency
index 4, p a prime, are given. Second, determine the number and structure of
~y-constacyclic codes whose alphabets are finite local Frobenius non-chain rings
of length 5 and nilpotency index 4, when the length of the code is relatively
prime to the characteristic of the residue field of the ring.
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The paper is organized as follows: in Section 2 basic facts on finite local
rings and modules over these rings are recalled. In Section 3 some isomor-
phisms between particular finite local rings are given. In Section 4 the family
of finite local Frobenius non-chain rings of length 5 and nilpotency index 4
is determined and the finite local Frobenius non-chain rings with p® elements
and nilpontency index 4, p a prime, are given. In Section 5 the number and
structure of «y-constacyclic codes over finite local Frobenius non-chain rings of
length 5 and nilpotency index 4 are determined, when the length of the code
is relatively prime to the characteristic of the residue field of the ring. In the
last section some conclusions are given.

2 Preliminaries

Throughout this work all rings are assumed to be finite, commutative with
unit element and all modules are finitely generated. As usual, GF(p?) is the
Galois field with p? elements, p a prime, and GF(p?)* denotes the non zero
elements of GF(p?). For details about this section we refer the reader to [10].

Let A be aring, I an ideal of A and M an A-module. Two elements a,b € A
are called coprime if (a) 4+ (b) = A. The submodule IM is called the ezpansion
of I to M. The annihilator ideal of M in A is defined as anna (M) := {a €
A:am =0,Vme M}, L(A) is the set of ideals of A. The length of M,
denoted by £ (M), is the length of a composition series for M. If the ring A
has the unique maximal ideal m, then it is called local, k = A/m its residue
field and it will be denoted by the triple (A, m,GF(q)). If (A, m,GF(q)) is a
finite local ring, then |M| = |GF(g)|[*4™). There is an integer ¢ > 1 such that
m! = (0) and m'~! # (0), called the nilpotency indexr of m, and t < £5(A),
(see [2]). A subset G of M generates M if and only if its image G in M/mM
generates M/mM as a GF(q)-vector space. A set of generators for M obtained
from lifting a basis of the GF(q)-vector space M/mM is called a minimal A-
generating set for M and va (M) denotes the number of elements in a minimal
A-generating set for the A-module M, (see [10], Theorem V.5). Note that
va(M) = dimgp(g) (M/mM) = o (M/mM).

Let (A, m, GF(q)) be a finite local ring and ~ : A[T] — GF(q)[T] the natu-
ral ring homomorphism that maps a — a + m and the variable T to T. The
polynomial f € A[T] is called basic irreducible if f is irreducible in GF(q)[T].
Hensel’s Lemma (see [10], Theorem XIII.4) guarantees that factorization as a
product of pairwise coprime polynomials in GF(q)[T] lifts to such a factoriza-
tion over A. Hence if 7 is a unit of A and (n, ¢q) = 1 there exists a unique family
of monic basic irreducible pairwise coprime polynomials fi, ..., f. € A[T] such
that T" —y =f; ---f,.. If g1, ..., gk are basic irreducible polynomials such that
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T™ — ~ is an associate of g; - - - gk, then r = k and, after renumbering, f; is an

associate of g;, 1 < i < r. And if gy,...,gr € A[T] are monic polynomials
such that T" — v = gy --- gk, then gi1,..., g, are pairwise coprime, r > k and
there is a partition of {1,2,...,r}, Uy,..., Uy such that g; = [[,cy, fu, (see

[31)-

A finite ring A is called a chain ring if the lattice of its ideals is a chain
under set-theoretic inclusion. The ring A is a finite chain ring if and only
if A is local and its maximal ideal is principal if and only if A is local and
£a(A) =t, where t is the nilpotency index of the maximal ideal of A, (see [4]).
A finite local ring (A, m, GF(q)) is Frobenius if anna (m) is the unique minimal
ideal, (see [11]).

Let (A, m, GF(q)) be a finite local ring, ¢ the nilpotency index of m, f € A[T]
be a basic irreducible polynomial and s = deg(f). There is a monic polynomial
g in A[T] and a unit v in A[T] such that f = g and g = of (see [10], Theorem
XIIL6). Let B = A[T]/(f) = A[T]/{g) = {ao+a1T+---+as_1T*" ! : a; € A}.
This ring is called the separable extension of A determined by f and has
the following properties (see [2], [3] and [10]): (a) B is local with maximal
ideal mB and residue field GF(¢®); (b) if T C A is a set of representatives of
GF(q) the set Ty := {ao + a;T + -+ as_ 1T ' : a; € T} C B is a set of
representatives of GF(q¢®); (c) if I is an ideal of A, then ¢4 (I) = ¢5(IB); (d)
(annp (I))B = anng(IB); (e) if {a1,...,q;} is a minimal A-generating set for
I, then it is also a minimal B-generating set for IB and v (I) = vg(IB); (f)
The nilpotency index of mB is ¢; (g) A is a chain ring if and only if B is a
chain ring; (h) A is a Frobenius ring if and only if B is a Frobenius ring, the
unique minimal ideal of B is anng(mB) = anna (m)B = m‘~!B; (i) If I is an
ideal of A, then annp (anna (I)) =T and £a (annp (I)) 4 24 (1) = €4 (A).

A (k x n) matrix over the field GF(q) is said to be in reduced row echelon
form, (rre)-form, if in each row i = 1,...,k, the first nonzero entry is equal
to 1, the index of the column in which the 1 occurs, called a pivotal column,
strictly increases with ¢, and the k pivotal columns are, in order, the columns
of the (k x k) identity matrix.

The following result describes the submodules between M and mM, where
M is a module over the local ring (A, m, GF(q)), (see [2]).

Lemma 2.1. Let (A,m,GF(q)) be a finite local ring, T C A a set of rep-
resentatives of GF(q), M an A-module and {aq,...,oq} be a minimal A-
generating set for M. Then the A-submodules of M between M and mM of
length k + A (mM), where 0 < k < | = dimgp(g)(M/mM), are in one to one
correspondence with the (kx1) matrices over GF(q) in (rre)-form. The matriz
H = (a;;) corresponds to the submodule (3 | a1;0,. .., Y iy Gkicy) + mM.
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The following result is a consequence of the previous result, when va (M) =
LA (M) — £p(mM) = 2. Recall that (0,1) and (1, ), where A € GF(g), are all
the 1 x 2 matrices in (rre)-form over GF(q).

Corollary 2.2. Let (A,m,GF(q)) be a finite local ring, T C A a set of repre-
sentatives of GF(q), M an A-module with vao(M) = 2 and {a1, a2} a minimal
A-generating set for M. Then the A-submodules of M between M and mM of
length 1+ £p(mM) are:

<a2>+mM, <041 +)\1a2>+mM, <a1+>\2a2>+mM, ceey (a1 +)\qa2>—|—mM, A €T.

3 Some isomorphism between local rings

We present results on particular finite local rings and results on finite fields
which we will use later. Some of them may be found in the literature but we
include them all here for completeness.

The following result is a well-know fact on finite local rings, (see [10],
Theorem XVIL1).

Theorem 3.1 (Structure Theorem for Finite Local Rings). Let (A, m, k) be a
finite local ring of characteristic p*, {ay,...,c;} a minimal A-generating set
of m and d = [k : F,,]. Then a subring S of A exists such that

(a) S = GR(p*,d), S is unique and is the largest Galois ring extension of

(b) A is a homomorphic image of S[X1,...,X;], i.e., A = S[aq,...,q].
For the next result see [2].

Lemma 3.2. Let I be an ideal of the ring GR(p*, d)[Xy,...,X;] such that for
alli e {1,...,1}, Xf” €1, for some k; € N. Then the ring

GR(p",d)[X1,...,X)]/T
is local with mazimal ideal (p, Xy, ...,X;)/I and residue field GF(p?).

For the next result recall that any ideal of the ring GR(p*, d)[Xy,. .., X]]
is finitely generated.

Corollary 3.3. Let (A, m, GF(p?)) and (A1, my, GF(p)) be finite local rings,
char(A) = p* and va(m) = I. By Theorem 3.1, let) : GR(p*,d)[Xy,...,X;] —
A an epimorphism and ker(¢¥)) = (g1,...,8-). Then A =2 Ay if and only if
|A| = |A1|, p =p1, d = dy, char(A;) = char(A), va, (my) = va(m) and a min-
imal Aq-generating set for my exists, {a1,...,qq}, such that g1(aq,...,qp) =
coo=gr(ag,...,ap) =0 in Ay
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Proof: =) We have |A| = |A;|, p = p1, d = di, char(A;) = char(A)7
va,(my) = va(m) and we may assume that the Galois ring GR(p*,d) C
Ay, If ¢ : A — Ay is an isomorphism, then {gm,b(Xl),...,(pw(Xl)} is a
minimal Aj-generating set for m; and g;(py(X1),..., (X)) = ou(g) =
©0) = 0,47 € {1,...,r}. Conversely: by Theorem 3.1, let the epimor-
phism ; : GR(p*,d)[X1,...,X;] — A; given by X; +— a;, then ker(y)) C
ker(¢;) and there is an epimorphism from A = GR(p*, d)[Xy, ..., X;]/ker(¢))
to GR(p*, d)[Xy, ..., X;]/ker(¢)1) = A;. The assertion follows from the relation
Al = [A].

Lemma 3.4. Let F = GF(p?) be a finite field.
(1) Ifu,v € F are such that /u €F and /v € F, then \/uv € F.

(2) Let p,mn,o0 € F with p # 0 and po # 1. The solutions of the system
of equations BBy = pB2%...(a),AA; — pA? —oB® = 0...(b),B? =
pBB1...(c),A? — pAA; — B3 =0...(d),AB; —A1B#0...(e) are:
Ifp=2A=2E A = ¢"pa£+ B, = pB, B € F*.
Ifpisodd and 0 =0, thenn#0, A=0, B=n, A; = +n?, By = pn.
If pis odd and o # 0, A = +54%a®, B = 1=£%a% A, = i(";w&,

B, = 1267042 g ¢ F*.

(3) Let u,v € F withu # 0. Some solution of the system of equations AA; =
vB}...(a), BBy =0...(b),B>=0.. ()AQZqu...(d),ABl—AlB;é
0...(e)are A=+% B=0,A = B1 = %, where a € F*.

u2)

Lemma 3.5. Let F = GF(p?) be the finite field u,uy,v,7,71,5,51 € F with
uuy # 0, r and s not both zero and r1 and s not both zero. Let uiAA; +
B1C+BC; —vB3 =0...(a), u1A? +2BC—uBi’ =0...(b), BB1 =0...(c),
B?2 = 0...(d), uirA? +2rB C1+sB? = s1...(e), B2 = r1...(f), AB; —
AB#£0...(9).

(1) If r £ 0 (if and only if r1 # 0) the system of equations has solution if and
only if =+ € F? and T € F?,

(a) If p = 2 some solutions are A = /T, /\ /7L B =0, C = 1 4

uy’

I [ A= F B =T, C el

(b) pr#250m6501u“0”5a7’6A:ﬁ\/ﬂ,B:O,CEEAlz
c2

F SR B T O g [T gy

__ Sr
272"
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(2) If r =0 (and then s # 0 and s1 # 0) the system of equations has solution
if and only if 2 € F3 and o e F2.

(a) Some solutions are A = /4, B =0, C€F, Ay = fu%?/%,/il% +

ﬁ\/ aufBl Q/ﬁClelF

Lemma 3.6. Let F = GF(p?) be the finite field, u,r, s,n,0, p, f,g with up # 0,
po #mn, r and s not both zero and f and g not both zero. Let fBY =r...(a),
qu%—FQfBlCl +gB‘i’ =S. ( ) BBl—pB2 —0 ( ), B01 +B10+’LLAA1—
upA? —2pBC— 0B = 0...(d), B2— pBBy = 0... (¢), uA2+2B,C; — pBC, —
pB1C —upAA; — B3 =0...(f), ABl—AlB#O...(g),

(1) If r £ 0 (if and only if f # 0) the system of equations has solution if and

only if % € F? and %\/? € F2.

(a) If p =2 the solutions are:

_ 1 Jgr ap Jr — 1 Jr
A= [SVF T/t e \f\/up 7B =5 CeF
=1 = f9(n=ap)
Ay =1 u\/}u/fu,Bl_ , C1 = pC+ 2 + 7y /120200 4
1 S(nfcrp)\/f
P Ie I
(b) If p is odd, the solutions are:
2
AGIF B** C— Au’)\/g*wz4[f(n+0p)+gp]+ﬁ\/g,

A =pA+2 \/7,/ ugp 7B1— f,C1— up \/7 T(g;pgp):':
A“\/n Up\/>_2f2+2f\/7

(2) If r =0 (if and only if f = 0) then s # 0 and g # 0 and the system of
equations has solution if and only if 5 € F3 and m;Tapp)s € F2.
The solutions are: ‘ ]

AEF B=1y/s CeF A =paxd /0 B = o2 ¢ = pC7
Aui/T /(n;gf)s+/%s/§_

For the rest of this paper, for a in the ring GR(p*, d), the class a + (p) is
denoted by @.
Recall the following: (1) 3 fp?—1 if and only if GF(p?)® = GF(p?), (2) 3|p?—1
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if and only if GF(p?)? C GF(p?) and in the last case the set of representa-
tives for the group GF (p?)* /[GF (p?)*]? is {GF(p?)*3, (GF(p?)*3, (2 GF (p?)*3},
where ( is a primitive element of GF(p?).

Lemma 3.7. Let T = {0,1,.. .,defz} be the Teichmiiller set of the Galois
ring GR(p?,d), u,v,7,s,m,0,p, f,g € T, withup # 0, po # 7, r and s not both
zero and f and g not both zero. Let A, r s given by GR(p?,d)[X,Y]/(rY?+
sY? —p, X2 —uY? XY —oY?, X X3Y, X?Y2, XY3, YY) and B(,0,,.1,9) given
by GR(p?, d)[X, Y]/{fY2+gY3—p, XY —pX2—0X3, Y2 - pXY —nX3, X4 X3Y,
X2Y2 XY?3,Y4). Then the rings Auv,rs) and By o0, 7.9) are isomorphic to
one of the following rings:

(a) Ifr #0 and p = 2.
(1) A(l,O,l,O) = GR(227d)[X7Y]/<Y2 - 27X2 - Y37XY>

(b) If r # 0 and p is odd.

(Z) A(l,(),l,O) = GR(pQ, d) [X,Y]/<Y2 —p, X2 Y3 XY>
(2) Ao.c,0) = GR(p?, d)[X, Y]/(CY? — p, X2 — Y3 , XY);
(9) Acor.0) = GR(P?, d)[X, Y]/(Y? - p,X* — (Y?,XY);
(4) Acoco) = GR(P?, d)[X, Y]/(CY? — p, X* — (Y?,XY).
(¢) Ifr=0, p=2 and 3|2% — 1.
(1) A(1707071) = GR(22, )[X Y]/<Y‘3 - 2 X2 Y37XY>,
(2) A100,0 = GR(2%,d)[X, Y]/(CY? — 2,X? — Y?,XY);
(8) Anoo.c2) = GR(2%, DX, Y]/(CPY? — 2, X% - Y3, XY).
(d) Ifr=0,p=2 and 3 J2¢ - 1.
(1) Aqoo1) = GR(2%,d)[X, Y]/(Y? - 2,X? — Y3, XY).
(e) Ifr =0, p is odd and 3|p? — 1.
(1) A1,001) = = GR(p ° d)[X,Y]/<Y3 —p, X2 — Y37XY>;
(2) A<1 0.0.0) = GR(p?, d)[X, Y]/(CY? —p, X* — Y3 XY);
(3 A0 g?) = GR( 2 d)[X, Y] /((PY? —p, X2 - Y3, XY);
(4) A¢001) = GR(p ad)[X’Y]/<Y3—p7X2—CY37XY>;
(5) A(cooc) GR(p?, d)[X, ]/(CYgf—p,X2 — (Y3, XY);
(6) Arco0.c2) = GR(P?, d)[X, Y]/(CPY? — p, X2 = (Y3, XY).

(f) If r =0, p is odd and 3 Jp? — 1.
(1) A(170»071) - GR( 27 d)[XvY]/<Y3 - D, X2 - Y37XY>7'
(2) Acoo1) = GR(P?, d)[X, Y]/(Y? — p,X* — (Y3, XY).

Proof: We have A(, . ,.s) = GR(p?, d)[X, Y] /(rY2+sY3—p, X?—uY? XY -
UY33Y4>7 B(n,a,p,f,g) = GR(pzvd) [XvY}/<fY2+gY3_pa XY_PX2_UX3»Y2 -
pXY — X3 X4) and, by Lemma 3.2, the rings Auo,rs) and B, 5, 7.4) are
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local with maximal ideal (x,y) and residue field GF(p?). First we consider
the ring Ay, ). In the ring A, , ) the relations p = ry? + sy3, py = ry°>,
px = rxy? + sxy> = 0 are satisfied, then every element of the ring Aluvrs)
can be uniquely written as ag + ax + by + c¢y? + dy>, where ag,a,b,c,d € T,
the elements of its maximal ideal are ax + by + cy? + dy>, where a,b, c,d € T.

Observe that for u,v,r, s,u1, 71,1 € T such that uuy # 0, r and s not both
zero and 71 and s1 not both zero, by Corollary 3.3, Ay vr.s) = Aruy,0,r1,81) if
and only if there exist a,ay,b,b1,c,c1 € T such that {a = ax + by + cy?, 3 =
a1x + byy + ¢1y?} is a minimal A(uy,0,r,5;)-generating set for the maximal
ideal of A(y, 0,ry,5,), hence @by —@1b # 0, and these elements must satisfy the
relations satisfied by x and y in A,y 1), 1.6, a8 — B3 =0, a® —uB® =0,
r3% 4+ 5% = p. From these relations and the expression for o and 8 we have:
(uraay + bic+ bep — vb3)y® + bbyy? = 0, (ura® + 2bc — ub?)y® + b*y? = 0 and
(urra? + 2rbiey + sb3)y® + rb3y? = s1y° + r1y?. These last relations hold if
and only if a, al, b,b1,c,c;1 €T exist such that wiaa; + 516 + be; — EBT =0,
ua’ + 2be — ub1 =0, bb; =0, b =0, ulral + 27biE + sb1 = 51, rbl =7,
@by, — @b # 0 if and only if a,ay,b, by, c,c; € T exist such that @, @, b, by,¢, ¢
are solutions of the system of equations of Lemma 3.5.

From the above argument it is easy to see that an isomorphism between
Atuv,rs) and Ay, 0,0, ,s,) 18 given by x — ax+by+cy? andy — aix+biy+c1y?,
where a,a1,b,by,c,c; € T are such that @,a,b,b;,¢ ¢ are solutions of the
equations of Lemma 3.5.

Now for the case By, 5.5, 1.9) = A(u,0,r,5), We use Lemma 3.6 and the same

arguments as above. That is, if we affirm B(n,a,p,f,g) = A(u,0,r,5), then there is
aminimal generating set {a = ax+by+cy?+dy>, 8 = a;x+b1y+c1y? —|—d1y3} of
the maximal ideal of Alu,0,m,8)5 Where a,ai,b, by, c c1,d,d; €T satisfy fb1 =T,
fua1+2fb101 —|—gb1 =3, bby —pb =0, b¢, +bic+uaa; —pua 2 _2pbe— ab =0,
b1 pbb1 =0, ual + 2b1¢1 — pbq pblc — puaa; — b =0 and @by — a1 #0.
And the assertion follows.
Lemma 3.8. Let u,v,n,0,p € GF(p?) with up # 0, po # n. Let Aty =
GF(p))[X,Y]/(X? —uY?3, XY —vY3 X4, X3Y, X2Y2 XY3, Y% and By,o,p) =
GF(pM)[X, Y]/(XY — pX2 — 0X3, Y2 — pXY — X3, X4, X3Y, X2Y2 XY3,Y?).
Then the rings A,y and B, 5 ,) are isomorphic to the ring:

Ao = GF(pH)[X, Y]/(X? - Y?,XY).

Proof: The same arguments as in Lemma 3.7, and using (2) and (3) of
Lemma 3.4, can be followed.

Lemma 3.9. Let T = {0,1,...,(pd*2} be the Teichmiiller set of the Ga-
lois ring GR(p*,d) and u,v,n,0,p € T with up # 0 and po # 7. Let A
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given by GR(p*, d)[X, Y]/ (X—p, Y2 —uX3 XY —0vX3, X4 X3Y, X?Y2 XY?3, Y?)
and B, ».0) given by GR(p*,d)[X, Y]/(X — p, XY — pX? — 0X? Y2 — pXY —
nX3 X4 XPY, X?Y2 XY?, Y*). Then the rings A,y and By, , ») are isomor-
phic to one of the following rings:

(a) Ifp=2
(1) Aqo) = GR(2%,d)[X]/ (X% — 23, 2X).

(b) If p is odd
(1) Ao = GR(p*, d)[X]/(X? — p*, pX):
(2) Aco) = GR(p!, )[X]/(X* — p*, pX).

Proof: The same arguments as in Lemma 3.7 can be followed. And observe
that A o) = A(1,0) if and only if ¢ € GF(p?)? if and only if p = 2.

Lemma 3.10. Let T={0,1,..., de72} be the Teichmiiller set of the Galois
ring GR(p?,d), u,v € T with u # 0 and Ay = GR(p?,d)[X,Y]/(X—p, X2~
uY?, XY —oY3, X4, X3Y, X2Y2 XY3, Y?). Then the ring A(y,v) is isomorphic
to one of the following rings:

(a) 3 fp?—1
(1) A0y = GR(p?,d)[X]/(p* — X3, pX).

(b) 3p?—1
(1) A,0) = GR(p?, d)[X]/ (p* — X3, pX)
(2) A0y = GR(P?, d)[X]/(p* — (X3, pX)
(3) Arcz.0) = GR(P?,d)[X]/(p* — (*X?, pX).

Proof: The same arguments as in Lemma 3.7 can be followed. And observe
that: A1) = A(c,0) if and only if ¢ € GF(p?)3, A(1,0) = A(¢2,0) if and only if

T € GF(?)3, Aqco) = Aca) if and only if ¢ € GF(p?)>.

4 Finite local Frobenius non-chain rings of length 5 and
nilpotency index 4

In the following we focus on describing the family of finite local Frobenius
non-chain rings of length 5 and nilpotency index 4. As a corollary the finite
local Frobenius non-chain rings with 32 elements and nilpotency index 4 are
given.

Let §: be the family of finite local Frobenius non-chain rings with nilpo-
tency index t, £; be the family of finite local Frobenius non-chain rings of
length [ and Sf = §: N £;. Observe the following: a) local Frobenius rings



CONSTACYCLIC CODES OVER FINITE LOCAL FROBENIUS NON-CHAIN
RINGS OF LENGTH 5 AND NILPOTENCY INDEX 4 77

with nilpotency index 2 are chain rings because anny(m) = m is a simple
ideal and m is principal; (b) local rings with nilpotency index 1 are fields; (c)
£5 = §2 U 2 because the previous observations and the relation ¢ < £ (A),
where A is a local non chain ring and ¢ is the nilpotency index of its maximal
ideal.

The following results on local Frobenius rings will be used later on. Recall
that if (A, m, GF(p?)) is a local Frobenius ring, I is an ideal of A and ¢ is
its nilpotency index, then the relations (a) £a(A) = €a(I) 4+ £a(ann(D)), (b)
annp (anna (I)) = I and (c) anna (m) = m!~! are satisfied.

Lemma 4.1. Let (A, m,GF(q)) be a finite local Frobenius non-chain ring, t
the nilpontency index of m and I an ideal of A. Then

(1) £a(m?) < €4(A) — 3.

(2) If ba(1) = la(A) — 2, thenm? C T C m.

(8) If A1) = 2, then m'~1 C 1 C ann(m?).

(4) If £a(T) = £a(annp (m?)) and va(I) = €o (1) — 1, then I = anna (m?).
(5) Leti€ {2,...,t—1}, then m' tanny (m?) = anna (m) = m*~1.

(6) va(anna(m?)) =va(m).

Proof: (1) The assertion follows from the relation:
va(m) = fa(m/m?) = la(m) — fa(m?) =I5 (A) — 1 — la(m?) > 2.
(2) By Nakayama’s Lemma I +m? C m, then:
Ia(A)—2=1(]) < EA(I+m2) <la(m) =Lla(A)—1,65(I) = €A(I+m2) and
m? CI=1+m2
(3) Since £ (anna (I)) = €a(A) — €a(I) = £a(A) — 2, then:
m? C anna (I) C m, and m‘~! = anna (m) C I C anna (m?).
(4) Since VA(I) = EA(I) —1= EA(I) - KA(mI), then:
la(ml) =1, mI =m!~1, m2[ = (0) and I C anny (m?).
The assertion follows from the relation £ (I) = £ (ann (m?)).
(5) The relation m*~!anna (m*) = (0) implies m*~! C anny (anna (m?)) = m?,
which is not possible. Then mi~tanna(m?) # (0), m{mi~tanns (m?)] = (0),
mi~tanna (m') C anna(m) and m*~lanna (m?) = anny (m) = mé~1
(6) From (5), manna (m?) = m'~1, then:
va(anna (m?)) = £ (anna (m?)/mi=1) = £ (annp (m?)) —1 = £ (A) —La(m?)—
1= EA(m) — €A(m2) = vA(m).

Lemma 4.2. Let (A,m,GF(q)) be a finite local Frobenius ring, t > 4 the
nilpotency index of m, T C A a set of representatives of GF(q), {a1,...,q;}
a minimal A-generating set for m, 1 an ideal of A and B = A/m'~1. We have
the following:
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(1) B is a local ring

a) The maximal ideal of B is m/m!~1,
b) The residue field of B is isomorphic to GF(q).
) Ty = {B+mi~1:3 €T} CB is a set of representatives for GF(q),

d) If1#0, then fg(I/m!=1) = £5(1)—1, in particular (5(B) = €a(A)—
1.

(e) {a; +mi=L ... a; +mi~t} is a B-generating set for m/m

(2) éB(annB(m/mt’l)) < Lla(A) —2.

C

(
(
(
(

(3) If A is not a chain ring, then B is not a Frobenius ring.

Proof: (1a) follows from the Correspondence Theorem.
(1b) follows from the relation [A/m'=!]/[m/m!=1] = A /m.
(1c) and (1d) are easy.

(1e) the assertion follows from the relation

ve(m/m'™) = f5([m/m'~"]/[m* /m'~1]) = £a(m/m*) = va(m).

(2) We have anng(m/m!=1) = (m*~! : m)/m!~1, where (m'~! :m) = {a € A :
am C m!~1}. The relation (m'~! : m) = m implies m?> C m*~!, which is not
possible, by Nakayama’s Lemma, then (m!~!:m) C m and

EB(annB(m/mt_l)) < ZA(m) —1= ZA(A) — 2.

(3) By (5) and (6) of Lemma 4.1, manna (m?) = m‘~! and [ = v (anna (m?)) =
va(m) > 2. By Lemma 2.1, the ideals between anna (m?) and manna (m?) =
m!~1 of length 1+ £ (m!~1) = 2 are in one to one correspondence with the,

%, (1 x 1) matrices over GF(q) in (rre)-form. Since ideals of A of length 2
are in one to one correspondence with minimal ideals of B, then B has ‘5%11

minimal ideals and is not a Frobenius ring.

Lemma 4.3. Let (A,m,GF(q)) € §:. Then:
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Proof: The first equality in (1) follows from Lemma 4.1(6) . (4) follows from
(3) and the relation £ (I)+£a (ann(I)) = €5 (A). Since 5 = {5 (A) = la(A/m)+
la(m/m?) +a(m?/m3) 4 o (m3) = 2 +va(m) + va(m?) and va(m) > 2, then
va(m) =2, va(m?) =1 and £5(m?) = 2.

The following result is central in proving the main result of this section.
Observe that if (A, m,GF(q)) is a finite local ring, T C A a set of repre-
sentatives of GF(g) and x,y € m with anng(x) = anng(y). Then x> = 0
if and only if x € anng(x) = annp(y) if and only if xy = 0 if and only if
y € anng(x) = anng(y) if and only if y? = 0. And if (x) = (y) is a minimal
ideal of A. By Nakayama’s Lemma my = (0) and there are a € T \ {0} and
m € m such that x = (a + m)y = ay.

Lemma 4.4. Let (A,m,GF(q)) € 2, T C A a set of representatives of GF(q)
and x € m\ m?. Then y € m\ m? exists such that {x,y} is a minimal A-
generating set of m, x* = x3y = x?y? = xy? = y* = 0 and one of the following
three relations is satisfied:

(a) x> =0, y2 # 0, x2 = uy®, xy = vy>, where u,v € T, u # 0, and

m? = (y?).
(b) y3 =0, x3 # 0, y? = ux3, xy = vx>, where u,v € T, u # 0, and
m? = (x?).

(¢) xy = px?+o0x3 and y? = pxy+nx>, where n,0,p € T are such that p # 0
and o #17 in GF(q), m? = (%) = (xy) = (y*) and md = (x7).

Proof: Since va(m) = 2 and m has nilpotency index 4, then y ¢ m \ m?
exists such that {x,y} is a minimal A-generating set for m and x* = x%y =
X2y? = xy3 = y4 = 0.

Let B = A/m?, x; and y; be the elements in the ring B corresponding to
x and y modulo m®. By Lemma 4.2, B is local ring with maximal ideal
m; = m/m3, residue field GF(q), ¢g(B) = 4, {x1,y1} is a minimal B-generating
set for my, Ty = {8+ m3 € B: B8 € T} is a set of representatives for GF(q),
1 < ¢p(anng(m)) < 3 and /g(anng(m;)) = 2. By Lemma 4.3(2), ¢g(m?) =
lp((m/m3)?) = f(m?/m3) = £ (m?/m3) = vo(m?) = 1, hence m? is a simple
ideal of B and is generated by any of its nonzero elements.

On the other hand, since anng(m;) = annpg(x;)Nanng(y1), {p(anng(my)) = 2,
lg(my) = 3, then ¢p(annp(x;)) € {2,3}, ¢g(annp(y1)) € {2,3}, annp(x;) €
{my,anng(m;)} and anng(y;) € {m;,anng(my)}. Thus the only possibilities
are the following:

(a) anng(x1) = my and anng(y;) = anng(my),

(b) annp(x1) = annp(my) and annp(y;) = my.

(c¢) annp(x7) = anng(m;) and anng(y;) = anng(m;),
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(d) anng(x1) = my and anng(y;) = my.

Each one of these cases will be treated. Observe that the case (b) is similar to
(a). Case (d) is impossible because anng(m;) = anng(x;) Nanng(y;) = my is
impossible.

CASE (a) annp(x;) = my and anng(y;) = anng(my).

We have x? = x;y; = 0, hence y? # 0, x2 € m?, xy € m3 and y? ¢ m®. Since
the nilpotency index is 4 and va(m?) =1, x3 =x*y =xy2 =0, y> # 0, m? =
(y?), m3 = (y3). Observe the relations x> = xy = 0 imply x € anna (m) = m?
which are not possible. If x? = 0, then xy # 0, m3 = (y3) = (xy), y® = 7xy,
where 7 € T\ {0}, y?2 — 7x € anna(m) = m® and x € m?, a contradiction,
hence x2 # 0, m® = (y%) = (x?), x? = uy?, xy = vy?, where u,v € T and
u # 0.

CASE (c) annp(x;) = anng(my) and anng(y;) = anng(my).

We have x§ # 0, x1y1 # 0, y§ # 0, then mf = (x7) = (v{) = (xay1), xay1 =
px3, where p € T1\{0}, x1(y1 —px1) = 0, y1 — px1 € anng(x1) = anng(y) and
y? —px1y1 = 0. These relations are equivalent to xy —px? € m3, y? —pxy € m3,
x? gm?, y?2 ¢ m® and xy ¢ m3, where p € T\ {0}. Hence m? = (x?) = (xy) =
(y?), by Lemma 4.3(2). Since the nilpotency index of m is 4, x’y = px3,
xy? = pxly = p2x3, y3 = pxy? = p3x3, m? = (x3), xy = px? + ox3 and
y? = pxy + nx3, where o, € T.

Finally, if po = 7 in GF(g), then nx® = pox® = ox%y, x(y — px — 0x?) = 0
and y(y — px — 0x?) = y? — pxy — ox?y = y2 — pxy — nx° = 0, consequently
y — px — ox? € anny (m) = m® C m?, a contradiction.

3

Corollary 4.5. Let (A,m,GF(p?)) € £2.
(1) If p € m?, then char(A) € {p,p?}.

(2) If p & m?, there is x € m\m? such that {p,x} is a minimal A-generating
set for m and:

(i) If {p,x} satisfies the relation of Lemma 4.4(1), then char(A) = p>.
(ii) If {p,x} satisfies the relation of Lemma 4.4(2), then char(A) = p*.
(éii) If {p,x} satisfies the relation of Lemma 4.4(53), then char(A) =p

4

Proof: (1) If p € m?, then p? € m* = (0) and the assertion follows.
(2) By Lemma 4.4, we have the following three cases:

(i) p® =0, x3#0, p? = ux®, px = vx3, where u,v € T, u # 0. Then p? # 0
and char(A) = p3.

(i) x> = 0, p* # 0, x2 = up?, px = vp?, where u,v € T, u # 0. Then
char(A) = p*.
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(ili) px = pp* 4+ op?®, x* = ppx + np?®, m*® = (p*) # (0), where 7,0,p € T are
such that p # 0 and po # 7 in GF(g). Then char(A) = p*.

The cases in Corollary 4.5 will be treated in the following propositions.

Proposition 4.6. Let (A, m, GF(p?)) € £} be such that char(A) = p* and
p em?. Then:

(i) When (p) = m?2.

(1) If p=2 the ring A is isomorphic to
GR(22,d)[X, Y]/(Y? — 2,X? — Y?,XY).
(2) If p is odd the ring A is isomorphic to
GR 2,d)[x Y}/(YZ ~p, X2~ Y3 XY) or
Y]/(CY? - p, X2 -~ Y3 XY) or
(Y2 —p, X% — (Y3, XY) or
(CY? —p, X2 — (YS,XY>.

(1) If p=2 and 3|2% — 1 the ring A is isomorphic to
GR(22,d)[X,Y]/(Y? —2,X2 - Y3 XY) or
GR(22,d)[X,Y]/(CY? —2,X%2 — Y3 XY) or
GR(22,d)[X, Y]/(C?Y? — 2,X2 — Y3, XY).

(2) If p=2 and 3 J2? — 1 the ring A is isomorphic to
GR(22,d)[X,Y]/(Y? —2,X2 - Y3 XY).

(3) If p is odd and 3|p® — 1 the ring A is isomorphic to

GR(p 2 ,d)[X, Y}/<Y‘3 —p, X2 - YS,XY> or
GR(P2»d) [X,Y]/(CY? —p, X2 - Y3, XY) o
GR(p2,d) [X,Y]/<C2Y3 —p, X% — Y3 XY>
GR(p?,d)[X,Y]/(Y? — p, X2 — CYg,XY> or
GR(p?,d)[X,Y]/(CY? — p, X% — (Y3, XY) or
GR(p? d)[X, Y]/(C*Y? — p,X* — (Y3, XY).

(4) If p is odd and 3 /fp — 1 the ring A is zsomorphzc to
GR(p?, d)[X, Y]/(Y? —p,X* = Y?,XY) o
)X Y]/(Y? —p, X? CYB,XY>.
T=1{0,1,..., de*Q} is the Teichmiiller set of the Galois ring GR(p?,d).

In these cases m = (x,y), m? = (y?) and anna (m?) = (x, y?).
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Proof: By Theorem 3.1 we may assume that the Galois ring GR(p?,d) C A
and let T = {0,1,... ,C”d’Q} the Teichmiiller set of this Galois ring. Let {x,y}
be a minimal A-generating set for the maximal ideal m satisfying statements
(i), (ii) or (iii) of Lemma 4.4. Cases (i) and (ii) are similar. By (i) and
(iii) of Lemma 4.4, m? = (y?) and m® = (y3), then p € (y?) implies p =
w1y? + woy3, where wy,ws € T not both zero. Observe that w; # 0 if and
only if (p) = m? and w; = 0 if and only if (p) = m3. Again by Theorem 3.1,
in case (i) there is an epimorphism from A(,, ) = GR(p? d)[X,Y]/(rY? +
sY? —p, X2 —uY?3 XY, X4 X3Y,X?2Y2,XY3 Y?%) onto A, and in the case (iii)
from B, 0..1.9) := GR(P?, )X, Y]/(fY? 4+ gY? — p, XY — pX? — 0X?, Y2 —
pXY — X3 X4 X3Y, X2Y2 XY?3,Y4) onto A, where r,s, f,g,u,n,0,p € T
with up # 0 and po # 7, r and s not both zero and f and g not both zero.
By the proof of Lemma 3.7, A 5| = [Bop.f.0)| = p°° = |A] then the
epimorphism mentioned above is an isomorphism and from the same Lemma
the assertion follows.

Proposition 4.7. Let (A, m,GF(p?)) € £} be such that char(A) = p. Then
A is isomorphic to
GF(pd)[X’ Y]/<X2 - YS) XY>

In this case m = (x,y), m? = (y?) and anny (m?) = (x,y?).
Proof: Use the same arguments as in Proposition 4.6 and Lemma 3.8.

Proposition 4.8. Let (A, m,GF(p?)) € £} be such that char(A) = p* and
p & m2. Then:

(1) If p=2 the ring A is isomorphic to
GR(2%,d)[X]/(X? — 23,2X).

(2) If p is odd the ring A is isomorphic to
GR(p*,d)[X]/(X? — p*,pX) or
GR(p", d)[X]/(X? = ¢p?, pX),
{0,1,..., C”d”} is the Teichmiiller set of the Galois ring GR(p*,d).

In these cases m = (p,x), m? = (p?) and annp (m?) = (p?,x).
Proof: Use the same arguments as in Proposition 4.6 and Lemma 3.9.

Proposition 4.9. Let (A,m,GF(p?)) € L2} be such that char(A) = p* and
p & m2. Then:

(1) If 3 Jp? — 1 the ring A is isomorphic to
GR(p*, d)[X]/(p* — X?,pX).
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(2) If 3|p? — 1 the ring A is isomorphic to
GR(p®, d)[X]/(p* — X?, pX) or
GR(p*, d)[X]/(p* — (X?,pX) or
GR(p’, d)[X]/(p* — (*X?, pX),

d

{0,1,...,¢P =2} is the Teichmiiller set of the Galois ring GR(p?,d).

In these cases m = (p,x), m? = (x?) and anny (m?) = (p,x?).

Proof: Use the same arguments as in Proposition 4.6 and Lemma 3.10.

In the following theorem we summarize the previously proven claims as the
main result of this section.

Theorem 4.10. Let (A, m, GF(p?)) be a finite local Frobenius non-chain ring
of length 5 and nilpotency index 4. Then A is isomorphic to one of the fol-
lowing rings:

(a) If p=2:
GR(2%,d)[X,Y]/(Y? - 2,X% - Y3 XY).
pr s odd:
GR(p?,d)[X, Y] /(Y% — p,X? = Y3, XY) or
GR(p?,d)[X,Y]/{CY? —p, X2 — Y3 XY) or
GR(p?,d)[X, Y] /(Y% — p, X% — (Y3, XY) or
GR(p?,d)[X,Y]/{CY? — p, X2 — (Y3, XY).

In this case:
char(A) = p?, m = (x,y),m? = (y2) = (p) and annp (m?) = (x,y?).

(b) If p=2 and 3]2¢ — 1
GR(22,d)[X, Y] /(Y? - 2,X2 = Y3, XY) or
GR(2%,d)[X,Y]/{CY? —2,X2 - Y3 XY) or
GR(22,d)[X, Y]/(C2Y? — 2, X2 — Y3, XY).
Ifp=2and3 j2¢ -1
GR(22,d)[X, Y]/(Y? — 2, X2 — Y3, XY).
If p is odd and 3|p? — 1

GR(p%, d)[X, Y]/(Y? — p, X2 — Y3, XY) o
GR(pQ, d)[X, Y] /(Y3 — p, X2 — y3 XY)
GR(p?, d)[X, Y]/(C2Y® — p, X2 — Y XY>
GR(p?,d)[X,Y]/{(Y3 —p, X2 — (Y3, XY) or
GR(p?, d)[X,Y]/(CY? — p, X2 — (Y3, XY) or
GR(p?, d)[X,Y]/ <CQY3 p, X% — (Y3, XY).

X,
If p is odd and3 -1
)X, Y]/(Y? — p, X2 — Y3, XY) or
)[X,Y]/<Y3—p,X2—<Y3,XY>.
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In this case:
char(A) = p?, m = (x,y),m? = (y?),m3 = (p) and anns (m?) = (x,y?).

(¢) GF(pd)[X, Y]/<X2 -Y3, XY).
In this case:
char(A) = p,m = (x,y),m? = (y2) and annp (m?) = (x,y?).

(d) Ifp=2
GR(2%,d)[X]/(X? — 23,2X).
If p is odd
GR(p*, d)[X]/(X2 — p*,pX) or
GR(p", d)[X]/(X? — ¢p*, pX),
{0,1,..., C”dﬁ} is the Teichmiiller set of the Galois ring GR(p*,d).
In this case:
char(A) = p*,p € m? m = (p,x),m? = (p?) and annp (m?) = (p?,x).

(e) If 3 Jp —1
GR(p*, d)[X]/(p* — X3, pX).

If3lp? — 1

GR(p®, d)[X]/(p* — X3, pX) or

GR(p®, d)[X]/(p* — (X3, pX) or

GR(p*, d)[X]/(p* — *X3, pX),

{0,1,..., CPLQ} is the Teichmiiller set of the Galois ring GR(p?,d).

In this case:
char(A) = p®,p ¢ m*, m = (p,x),m? = (x?) and anny (m?) = (p,x?).

Let (A, m, GF(29)) € £2 be such that A has 2° elements. Since |[A| = 2° =
(2°4) and 3 J2° — 1, then d = 1 and we have the following;

Corollary 4.11. Let (A, m, GF(p?)) be a finite local Frobenius non-chain ring
with nilpotency index 4 and 2° = 32 elements. Then A is isomorphic to one
of the following rings:

(a) Zo2[X,Y]/(Y? - 2,X2 — Y3,XY).

)

In this case, char(A) = 22, 2 € m?, (2) = m?.

(b) Z2[X,Y]/(Y? — 2,X2 — Y3,XY)
In this case, char(A) =22, 2 € m?, (2) = m3,

() GF(2)[X, Y]/(X? — Y?,XY)
In this case, char(A) = 2.

(d) Zya[X]/(X% - 23,2X).
In this case, char(A) = 24, 2 ¢ m?.
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(6) 7 [X]/ (22 — X, 2X).
In this case, char(A) = 23, 2 ¢ m?.

5 Constacyclic codes over finite local rings in §;

Let (A, m,GF(q)) be a finite local ring and 7 a unit of A. Assume that the
integer n > 1 is not divisible by p, so that by Hensel’s Lemma, T™ — v is
the product of basic irreducible pairwise coprime polynomials in A[T]. Re-
call that a linear code of length n over A is vy-constacyclic if it is invariant
under the permutation (ag, ai,...,an—1) = (Yan-1,0a0,--,an—2). As usual,
~-constacyclic codes of length n over A can be identified as ideals in the quo-
tient ring A[T]/(T™—+) via the isomorphism from A" to A[T]/(T™—+) defined
by (ag,...,an_1) — ag+a1T+...+a,_1T""1 (the polynomial representation
of A™).

Recall that §3 is the family of finite local Frobenius non-chain rings of length
5 and nilpotency index 4. In this Section the structure and the number of con-
stacyclic codes over rings in §; of length relatively prime to the characteristic
of the residue field of the ring are determined.

The following result is on the structure of y-constacyclic codes given in [2].

Lemma 5.1. Let (A,m, GF(q)) be a finite local ring, | = €s(A), v a unit of A
and n an integer relatively prime to q. Let T" —~ = {1 - - - f. be a representation
of T™ — ~ as a product of basic irreducible pairwise coprime polynomials in

A[T], A, = A[T]/{;) and s; = deg(L;). Then
(1) A[TI/(T" =) = @i As

(2) Any ideal 1 of A[T]/(T™ —~) is a direct sum of ideals of A; and there is
a partition of [1,...,r], U, Uy,..., U, such that:

I=PrLePLe.o P Le P LoPL

ueUy ueUsy ueU;_o ueU;_q ueU;
where U; = {u: ly,(I,) =i}.
(3) Let I and Uy, Uy, ..., U; be as above, then:

|I‘ — qZuEUl Sut2 ZuEUQ sut...+(1-1) ZuEU171 sutl ZUEUZ Su

(4) The number of y-constacyclic codes of length n over A is:

[C(AD[-- - [£(A)]-
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For the remainder of this paper the following notation will be used. Let
(A,m,GF(q)) € F3, f € A[T] a basic irreducible polynomial, s = deg(f) and
(B = A[T]/(f),mB, GF(¢®)) the separable extension of A determined by f.

(a) For T C A, a set of representatives of GF(q), without loss of general-
ity it can be assume that T is the Teichmiller set of the Galois ring
GR(char(A), d).

(b) Ty = {ag+a1T+---+as_1T*"!:a; € T} C B the set of representatives
of B/mB = GF(¢°).

(¢) For a € GF(¢®), a(Ts) will denote the only representative of a in Ts.
For h = ag + a1T + ... + ¢yT! € GF(¢*)[T] the polynomial ao(Ts) +
a1(Ts)T + ...+ a;(T,)T! in B[T] will denoted by hr..

(d) A fixed minimal A-generating set {ay, as} of the maximal ideal m will
be considered.
If the ring A is one of the rings in case (a), (b) and (c¢) of Theorem 4.10,
a; =x and ag =y.
If the ring A is one of the rings in case (d) of Theorem 4.10, a; = x and

Qg = DP.
If the ring A is one of the rings in case (e) of Theorem 4.10, a; = p and
Qo = X.

When we take a minimal A-generating set for m we understand that
{a1, a3} is that ordered minimal A-generating set for m.

Observe that, in all cases, ajag = 0, m = (a1, as), m? = (a3), and
anna (m?) = (aq, a3).

For our purposes the following result on the ideals of a ring in the family
T2 will be useful.

Lemma 5.2. Let (A,m,GF(q)) € 33, T and T, as above, & = {ay,as} the
minimal A-generating set for m, £ € A[T]| a monic basic irreducible polynomial

of degree s and B = A[T]/(f), then:

(1) The ideals of length 2 of B are between m3B and anna (m?)B and these
ideals are:
(a3), (a1 + A1ad), (a1 + Aead), ..., (a1 + Ag=a3) N € Ts.

(2) The ideals of length 3 of B are between m*B and mB and these ideals
are:

<0417 Oé%>, <042>, <041 + )\2042), <0£1 + /\30¢2>, ceey <041 + )\qsa2> A €Ty \ {0}

In particular, the number of ideals of B is 2¢° + 6, mB and anna (m?)B are
the only two non principal ideals of B.
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Proof: First recall the following facts: (a) (B,mB, GF(¢%)) € §2 and m3B

is the unique minimal ideal of B, (b) manns(m?) = m3 and [anna(m?)|B =
anng(m?B) = (a1,03), (¢) a minimal A-generating set for an ideal of A
is a minimal B-generating set for its expansion to B, (d) va(anns(m?)) =
vp(anng (m?)B) = va(m) = vg(mB) = 2, () m®B = (a2) and va(m?) =
VB (mQB) =1
(1) {a1,0a3} is a minimal A-generating set for anna (m?). By Lemma 4.1(3),
the ideals of length 2 are between manna (m?)B = m®B and ann(m?)B. The
assertion follows from Corollary 2.2.
(2) By Lemma 4.1(2), the ideals of length 3 are between m?B and mB. By
Corollary 2.2, the ideals between m?B and mB are (ap) + m?B, anng(m?B) =
<041> + mQB, <a1 + )\2a2> + ITlQB7 <041 + )\30[2) + m2B7 RN <Oz1 + )\qsa2> + m2B7
where \; € T,\ {0}. Now let I be an ideal of B of length 3, since vg(m?B) = 1,
then vg(I) < 2, and if vg(I) = 2, then I = anng(m?B) = (a3, ), by Lemma
4.1(4). The assertion follows.

Corollary 5.3. Let (A,m,GF(q)) € §2, v a unit of A and (n,q) = 1. Let
f1,...,f. the unique monic basic irreducible pairwise coprime polynomials such
that T* — ~v = f;---f. and s; = deg(f;). Then the number of y-constacyclic
codes of length n over A is:

[2¢° +6][2¢°> + 6] - - - [2¢°" + 6].
Proof: The assertion follows from Lemma 5.1(4) and Lemma 5.2.
Observation 1. With the notation as in Lemma 5.2.

(1) The ideals of A of length 2 are in one to one correspondence with the set
{(0,1),(1,\) : \; € Ty}, that is:
(0,1) = (a3), (1, M) = (a1 + Nia3) A €T,

(2) The ideals of A of length 3 are in one to one correspondence with the set
{(0,1), (1, ) : A\; € Ty}, that is:
(07 1) — <042>7 (1, 0) — <OZ1, Oé%>, (17 >\z) — <C¥1 + )\ia2> A €Ty \ {0}

(3) We write & for {a1,a2} and B for {ai,a3}; (0,1)8 for the ideal of
B generated by ao; (1,0)2 for the ideal of B generated by oy and a3;
(1,X\:)8 for the ideal of B generated by oy + A\;aa, where \; € Ty \ {0};
(0, l)g for the ideal of B generated by o3; (1,)\1;)23 for the ideal of B

generated by oy + \;a3, where \; € Ts.
For the remainder of the manuscript the following notation will be used.

Given (A, m,GF(q)) a finite local ring, v a unit of A. If g(T) is a factor of
" — 4, let g(T) = %. We will just write ag + a1 T + ...+ a1 T for
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the corresponding class of ag + a1 T + ...+ ap,_1 T + (T — ) in the ring
A[T]/(T™ = ).

The main result of this section, on the structure of y-constacyclic codes
over a ring of the family §3 can now be established.

Theorem 5.4. Let (A,m,GF(q)) € §2, v be a unit of A, & = {a1,a2} a
minimal A-generating set form, T and Ty as above, C a y-constacyclic code of
length n over A, f1,... . the unique monic basic irreducible pairwise coprime
polynomials such that T —~y =f;---f. and s; = deg(ﬂ). Then there exists
unique monic polynomials Fo,F1,Fy4, F5, unique subsets Ua, Us of [1,...,7],
and for each i € {2,3} and each u € U;, a unique v, € {(0,1),(1,N) : XA €
Teg(t,) ), such that:

('Z) Tn -7 = FOF1F4F5 HUGUl fu Hu€U2 fu;
(9) C = (m*Fy,mFy,Fs, (¥4) 5u, (Vo)atw : v € U, w € Us).
(3) |C‘ _ q5deg(F5)+4deg(F4)+deg(F1)+2 Eu€U2 deg(f,)+3 EV€U3 deg(f,,)'

Proof: Let A; = A[T]/(f;). From Lemma 5.1(2) and since m3A; is the
minimal ideal of A; and mA; is the maximal ideal of A;, there is a partition
of [1,...,7], Vo, V1,..., Vs, such that C has the form:

PrraePrePlLe Pmre P A,
vEV] vEV2 vEV3 vEVy vEVs
where V; = {v : €y (I,) =i}
Let u € V3, by Lemma 5.2(1), I, is of the form (
in A[T]/(T" — ~) with (¥,)zfu, where ¥, € {(0,1
Let w € V3, by Lemma 5.2(2), I, of the form (¥,,)s, and it is identified in
A[T]/(T™ — ) with (Vy)afy, where ¥, € {(0,1), (1, A) : A € Taegs,) }-
Let ¥F; = [[,cvy, fu, for i € {0,1,4,5}. Since @y, Ay is identified in
A[T]/(T™ — ) with F;, the assertions (1) and (2) follow, the last assertion
follows from Lemma 5.1(3). The uniqueness is trivial.

Vu)p and it is identified
)7(1,)\) A€ Tdcg(fu)}.

The following examples are given illustrating the previous results.

Example 1. Let A = GF(2)[X, Y]/(X% — Y3, XY), be the ring of Proposition
4.7, and v be a unit of A. {x,y} is a minimal A-generating set for m, T =
GF(2) C A is a set of representatives for its residue field. By Hensel’s Lemma,
TY — v = fifofafafs, where deg(fi) = 1, deg(fz) = 2, deg(fs) = deg(fs) =
deg(fs) = 4. Then AT]/(T' — ) = A & AT}/ (&) ® A[T]/ {(fs) ® A[T]/(E1) &
A[T)/{t5), Ta = {a1 + a2T : a; € GF(2)} is a set of representatives for the
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residue field of the ring A[T]/(f2), T4 = {a1 + a2T + az3T? + a4T? : a; €
GF(2)} is a set of representatives for the residue field of the rings A[T]/(f;),
i€ {3,4,5}.

The number of vy-constacyclic codes of length 15 over A is [2(2)* + 6][2(2)* +
6][2(2)* + 6][2(2)% + 6][2(2) + 6] = 7682080, and

(a) If Uy = {2}, Uz = {3}, Fo = fify, F1 = f5, Fy = F5 = 1, 0 =
(1,a0 + a1 T) and 03 = (0, 1), the corresponding code is:

~

C = (m*Fy, mFy, Fs, (V) 5, (Fu)afw 1 u € Us,w € Us) =
<m3ga [X + ((lo + alT)YQH.\Qa y,f3> =
(v*hifofsty, fifafsfy, [x + (a0 + a1 T + a2 T + asT?)y?|f1f3f4fs, yi1f264f5).
(0) If Uy = {4}, U3 = 0, Fo = 1, Fy = fo, Fy = fifs, F5 = f5, ¥4 =
(1,a0 + a1 T + a2 T? + a3T?), the corresponding code is:
C = (m*Fy, mFy, Fs, (V) 5. (Fu)ale 1 u € Uy, w € Us) =
<m3fA2, mﬂgu fA57 [x+ (ap+ a1 T + asT? + a3T3)y2]?4> =
(v*hifafafs, xfofufs, yhafafs, fifafafa, [+(a0+a1 T+as T +asT)y? fifofafs).
Example 2. Let A = GR(22,d)[X,Y]/(Y? — 2,X% — Y3 XY), be the ring of
Proposition 4.6, and v be a unit of A {x,y} is a minimal A-generating set for
m, T ={0,1} C A is a set of representatives for its residue field. By Hensel’s
Lemma, T7 — v = fifofs, where deg(f;) = 1, deg(fz) = deg(fs) = 3. Then
A[T]/(T7—~) =2 AGA[T]/{f)®A[T]/(f3), T3 = {a1+asT+a3T? : a; € GF(2)}
is a set of representatives for the residue field of the rings A[T]/{f;), i € {2,3}.

The number of y-constacyclic codes of length 7 over A is [2(2) + 6][2(2)% +
6][2(2)% + 6] = 4840, and

(a) If Uy = {1,2}, U3 = {3}, Fo = F;, = F, = F; =1, 41 = (1,0),
Ty = (1,a0+a1T+axT?) and U3 = (1,by+b1 T+boT?), the corresponding
code is:

C = (m®F;, mFy, Fs, (V) 360, (Vu)aku - u € Us,w € Ug) =

<m3ga [X + (aO + alT)YQH.\Qa y,f3> =
(v f1fafafy, fifofafy, [x + (a0 + a1 T + a2 T? + a3 T%)y?]f1 354 f5, yEi fofafs).
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(b) If Uy = {4}, U3 = 0, Fo = 1, Fy = fy, Fy = fifs, F5 = f;5, ¥4 =
(1,a0 + a1 T + a2 T? + a3 T?), the corresponding code is:

~

C= <m3ﬁ;mﬁ; ﬁ;: (\?u)gﬁm (VUJ)d/f\w cu € Ug,w € U3> =

(m3fy, mfifs, f5, [x + (a0 + a1 T + a2 T2 + a3 T?)y?JEy) =
(v*ifsfyfs, xfofyfs, ylafafs, fif503fy, [x+(ao+a1 T+a T?+asT?)y?]f1fofsf5).

6 Conclusion

In this paper the family of finite local Frobenius non-chain rings of length 5
and nilpotency index 4 is determined. Furthermore, the number and struc-
ture of ~«-constacyclic over finite local Frobenius non-chain rings of length 5
and nilpotency index 4, of length relatively prime to the characteristic of the
residue field of the ring, are determined. Examples are included illustrating
the main results.
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